Cross-Neutralising Nanobodies Bind to a Conserved Pocket in the Hemagglutinin Stem Region Identified Using Yeast Display and Deep Mutational Scanning

نویسندگان

  • Tiziano Gaiotto
  • Simon E. Hufton
چکیده

Cross-neutralising monoclonal antibodies against influenza hemagglutinin (HA) are of considerable interest as both therapeutics and diagnostic tools. We have recently described five different single domain antibodies (nanobodies) which share this cross-neutralising activity and suggest their small size, high stability, and cleft binding properties may present distinct advantages over equivalent conventional antibodies. We have used yeast display in combination with deep mutational scanning to give residue level resolution of positions in the antibody-HA interface which are crucial for binding. In addition, we have mapped positions within HA predicted to have minimal effect on antibody binding when mutated. Our cross-neutralising nanobodies were shown to bind to a highly conserved pocket in the HA2 domain of A(H1N1)pdm09 influenza virus overlapping with the fusion peptide suggesting their mechanism of action is through the inhibition of viral membrane fusion. We also note that the epitope overlaps with that of CR6261 and F10 which are human monoclonal antibodies in clinical development as immunotherapeutics. Although all five nanobodies mapped to the same highly conserved binding pocket we observed differences in the size of the epitope footprint which has implications in comparing the relative genetic barrier each nanobody presents to a rapidly evolving influenza virus. To further refine our epitope map, we have re-created naturally occurring mutations within this HA stem epitope and tested their effect on binding using yeast display. We have shown that a D46N mutation in the HA2 stem domain uniquely interferes with binding of R2b-E8. Further testing of this substitution in the context of full length purified HA from 1918 H1N1 pandemic (Spanish flu), 2009 H1N1 pandemic (swine flu) and highly pathogenic avian influenza H5N1 demonstrated binding which correlated with D46 whereas binding to seasonal H1N1 strains carrying N46 was absent. In addition, our deep sequence analysis predicted that binding to the emerging H1N1 strain (A/Christchurch/16/2010) carrying the HA2-E47K mutation would not affect binding was confirmed experimentally. This demonstrates yeast display, in combination with deep sequencing, may be able to predict antibody reactivity to emerging influenza strains so assisting in the preparation for future influenza pandemics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico mutational analysis and identification of stability centers in human interleukin-4

Interleukin-4 (IL-4) is a multifunctional cytokine that plays a critical role in apoptosis, differentiation and proliferation. The intensity of IL4 response depends upon binding to its receptor, IL-4R. The therapeutic efficiency of interleukins can be increased by generating structural mutants having greater stability. In the present work, attempts were made to increase the stability of human I...

متن کامل

Construction of a Nanobodies Phage Display Library From an Escherichia coli Immunized Dromedary

Background: Diarrhea caused by Escherichia coli is a major cause of morbidity and mortality in young animals. Few treatment options are available, mainly antibiotic therapy increasingly limited by resistance to commonly used drugs.Objectives: The aim of this work was to develop immunotherapy based on the use of camel VHH antibody fragments, or nanobodies,...

متن کامل

کاربری پروتیین‌های جدید در ساخت واکسن استافیلوکوکوس اورئوس

Background: Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the spread of antibiotic resistance. Novel potential targets for therapeutic antibodies are products of staphylococcal genes expressed during human infection. Previously, the secreted and surface-exposed proteins among seroreactive antigens have been discovered. Furthermore...

متن کامل

Heamagglutinin Conserved Domain (HA2) Prepared in Prokaryotic System is Immunogenic in Mice but not Protective against Lethal Influenza Challenge

Background and Aims: Influenza vaccine production process is time-consuming with little-to-no cross-protection which requires annual adjustment. The construction of a universal vaccine to deal with the pandemics and epidemics which occasionally threat human population is the aim of many researches worldwide. Today, influenza vaccines are mostly against two major antigenic proteins, hemagglutini...

متن کامل

The Breadth of Cross Sub-Type Neutralisation Activity of a Single Domain Antibody to Influenza Hemagglutinin Can Be Increased by Antibody Valency

The response to the 2009 A(H1N1) influenza pandemic has highlighted the need for additional strategies for intervention which preclude the prior availability of the influenza strain. Here, 18 single domain VHH antibodies against the 2009 A(H1N1) hemagglutinin (HA) have been isolated from a immune alpaca phage displayed library. These antibodies have been grouped as having either (i) non-neutral...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016